Publication: Hyperloop Capsule Inside a Low-Pressure Environment

User avatar
IMB
Posts: 121
Joined: 3. Apr 2021, 16:55

Publication: Hyperloop Capsule Inside a Low-Pressure Environment

Unread post by IMB »

CFD Simulation of a Hyperloop Capsule Inside a Low-Pressure Environment Using an Aerodynamic Compressor as Propulsion and Drag Reduction Method
by Federico Lluesma-Rodríguez, Temoatzin González, Sergio Hoyas

Keywords: CFD; evacuated tube; train; vacuum tube; hyperloop; aerodynamic propulsion
Abstract
One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.
Appl. Sci. 2021, 11(9), 3934; https://doi.org/10.3390/app11093934 [Titel anhand dieser DOI in Citavi-Projekt übernehmen]
Received: 10 March 2021 / Revised: 20 April 2021 / Accepted: 22 April 2021 / Published: 27 April 2021
(This article belongs to the Special Issue Application of Computational Fluid Dynamics in Mechanical Engineering)

Source: https://www.mdpi.com/2076-3417/11/9/3934/htm
Accessed: 2021-04-27
Best regards,
The IMB Forum Crew
https://www.maglevboard.net/en/

Post Reply